JOURNAL OF COMPUTATIONAL PHYSICS 113, 279-290 (1994)

Moving Mesh Methods Based on Moving Mesh
Partial Differential Equations

WEIZHANG HuaNG, YUHE REN, AND ROBERT D. RUSSELL

Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V3A 156

Received November 6, 1992; revised December 27, 1993

Several versions of a moving mesh method are developed based on
a mesh spatial smoothing technique and on the moving mesh PDEs
derived in a previous paper. These versions are quite simple and easy to
proegram. They are applied to three bench-mark one-dimensional
problems which show different solution behaviour. The numerical
results clearly demonstrate that the present methods are capable of
accurately tracking rapid spatial and temporal transitions. © 1992
Acadamic Press, Inc.

1. INTRODUCTION

Adaptive mesh methods have been widely used in the last
decade for solving differential equations which involve large
solution variations, such as shock waves, boundary layers,
and contact surfaces (e.g, see [HGH91]). It has been
amply demonstrated that significant improvements in
accuracy and efficiency can be gained by adapting mesh
points so that they are concentrated about areas of large
solution variation.

For the numerical solution of time-dependent differential
cquations, adaptive mesh methods can be roughly divided
into two categories, static and dynamic. For static methods
the redistribution of the nodes, the possible addition of new
nodes, and the interpolation of dependent variables from
the old mesh to the new mesh are all done at a fixed time.
For dynamic methods, or moving mesh methods, a mesh
equation which involves node speeds is employed to move
a mesh having a fixed number of nodes in such a way that
the nodes remain concentrated in regions of rapid variation
of the solution. The mesh equation and the original differen-
tial equation are generally solved simultaneously for the
physical solution and the mesh. Interpolation of dependent
variables from the old mesh to the new mesh is unnecessary.

Among moving mesh methods, the moving finite element
method (MFE) of K. Miller [MMB81, Mil81] and the
moving finite difference method of Dorfi and Drury
[DD877 have aroused considerable interest. The MFE uses

279

a very natural and elegant formulation to control mesh
movement. The solution and mesh are both obtained by a
process closely associated with equidistribution of one error
measure: the residual of the original equation written in
finite element form. While the MFE has been subject to
some criticism because of its complexity and sensitivity with
respect to certain user defined input parameters [FVZ9Q],
proper choice of these parameters unquestionably leads to
an efficient method. The method in [DD87] is based upon
a moving mesh equation obtained directly from an equi-
distribution principle. It is recommended in [FVZ90] for
actual applications because of its simplicity and relative
insensitivity with respect to selected parameters.

The key in developing moving mesh methods lies in for-
mulating a satisfactory mesh equation. It has proven to be
surprisingly difficult to derive consistently reliable moving
mesh equations. In addition to the capability of concen-
trating a sufficient number of points in regions of rapid
variation of the solution, a satisfactory mesh equation
should be simple, easy to program, and reasonably
insensitive to the choice of its adjustable parameters. As
compared with the problem of discretizing the underlying
physical equation, this task is somewhat artificial. That is,
the construction of a moving mesh equation cannot be
guided completely by physical arguments and must rely on
some numerical principles.

In [HRR92], several moving mesh partial differential
equations (MMPDEs) based on the equidistribution prin-
ciple are derived and studied both theoretically and numeri-
cally. Some of these MMPDEs are new, and several are
rclated to methods developed in [And83a, And83b,
FCLDA&3, Hi5p83, Mad84, Gre85, AF86a, AF86b, CFLS6,
HLE6, DD87, RR92, Ren92]. The first and second of these
MMPDEs have some computational difficulty due to the
basic term dM/d1, where M denotes the underlying monitor
function. The other five basic MMPDEs are both
simple and easy to implement. Moreover, it is found in
[HRR92] that under very general conditions for these
(MMPDEs 3-7) not only are mesh crossings guaranteed
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not to occur, but the meshes retain equidistribution of the
monitor function.

The objective of this paper is to develop and test moving
mesh methods based on MMPDEs 3-7 and on a spatial
mesh smoothing technique. Here, we emphasize that,
although some of these methods are related to several
existing moving mesh methods, there are key differences. In
particular, the discrete approximations to the MMPDEs do
differ from related discrete moving mesh equations used
previously, and the mesh spatial smoothing technique is
different.

An outline of the paper is as follows: In Section 2 moving
mesh methods based on the MMPDEs are developed. In
Section 3, these methods are applied to three bench-mark
problems, a reaction—diffusion equation, the well-known
convection—diffusion equation of Burgers and a system of
two quasi-nonlinear hyperbolic equations. Secticn 4
contains conclusions and further discussion.

2. MOVING MESH METHODS

In this section, we develop moving mesh methods based
on MMPDEs 3-7, derived in [ HRR92]. We start with a
review of the equidistribution principle and then describe
the discrete approximations to the MMPDEs in Sub-
section 2.1. In Subsection 2.2, a spatial mesh smoothiﬁg
technique is presented. A summary description of the
moving mesh methods is given in Subsection 2.3,

2.1. MMPDEs

Let x and ¢ denote the physical and computational coor-
dinates, respectively, assumed without loss of generality to
be over the unit interval [0, 1]. A one-to-on¢ coordinate
transformation between these domains is denoted by

x=x(& 1), {e[0,1], x(0,0)=0, x(1,)=1 (1)

where ¢ denotes time. We employ the notation
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for an arbitrary function f= f{(x, t)= f(x(&, 1), t). For a
given uniform mesh on the computational domain

i
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the corresponding mesh in x is

{Xgs X1 5 s X, - (4]

For an arbitrary function f on this computational mesh,
denote f;= f(¢,, 1)

For a monitor function M{x, ) (>0) which provides
some measure of the computational error in the solution of
the underlving physical PDE, the one-dimensional equi-
distribution principle (EP) can be expressed in its integral
form [Whi79] as

x(4.8)

M(Z, t) d% = £6(1), (5)

o

where

9(1):[01 M 1) d%. (6)

Differentiating {5) with respect to ¢ once and twice, we
obtain two differential forms of the EP,

é
M(x(S, 1), f)ggl‘(é, ty=6(¢) (7)

and

a d
g {M(x(é, ), ) 5 e a}} -0, (8)

4 g

These EPs, (5), (7), and (8), which do not contain the
node speed x(¢, 1), are called quasi-static EPs {QSEPs)
in [HRR92].

Related to these QSEPs, various MMPDEs are derived
in [HRR927]. The ones of concern here are

ik 14 fih
555(M)‘:)=—;%(M£), (MMPDE3)
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and

a ox d ax\ éx /ox 13 Ox
&(M%)"zéz(%z)&/&“z@é(%)-
{(MMPDE?7)

These MMPDEs not only force the mesh {x(¢, ¢)) toward
equidistribution but also prevent the mesh from crossing.
More specifically, the term — (1/2)(&/3E)( M(GM/3E)) plays
the fundamental role of a correction term to make the mesh
equidistribute the monitor function and a source for the
mesh movement as a stabilizing term for the mesh trajec-
tortes, The parameter T represents a timescale for forcing the
mesh toward equidistribution (see [HRR927).

Here, we discretize MMPDEs 3-7 in space with centred
finite differences on the uniform mesh (3) and use the
method of lines. Their discrete approximations are given,
respectively, by

1 . ) .
El_'/;l_)'i[M£+lxi+1*2Mr'xi+Mi)lxi—l]
E;
=-7 )
M+ M, MM
2(1/n)? (Xipr— X} — A1n)? {(%,—x%;_,)
E,
=—7 (10)
_ fo i 1
W= " (Y
1 , .. £
W[xwp—Zx,-ﬂ-x,-_l]——?, (12)
M, +M; | L, MM,
2(1/?1)2 (X0 X) 2(1/11)2 (X;—%_y)
T . E;
—255%*—‘—”-%=——. (13)
it+1 i—1 T

Here, E, is the discrete approximation of (3/0E} M - 3x/38¢)
at £ =&, given by

M.+ M,

i M+ M,
2t T Ty

Ei= 21jn)?

(x;i— %)
(14}

Note that using a value for 7 in (11) {(MMPDES) has
roughly the same effect as using that value divided by #* in
the other MMPDEs. This can be useful in the selection of 1
for MMPDES3 (sece Section 3).

Approximations related to these MMPDEs have been
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considered by various authors (see Table 1). Scheme (9) can
be derived from a familiar MMPDE (MMPDE1 in
[HRR92]) with a special discretization technique, and it
has been studied in [RR92, Ren92] for the case where M is
not smoothed in the way described in the next subsection.
Blom and Verwer [BV897 use scheme (10) and suggest a
certain spatial smoothing of the node distances, but they
unfortunately find that it is difficult to get the scheme to
converge with a Newton process. It is important to reiterate,
more generally, that the discrete approximations of these
MMPDEs may be qualitatively very different from related
but distinct discrete moving mesh equations. For example,
the scheme (13) is quite different from the (discrete) moving
mesh equation in the method of Dorfi and Drury [DD87],
although MMPDE?7 can be derived from it. Equally impor-
tantly, a different spatial mesh smoothing technique than
has been used previously will be combined with the
approximations of the MMPDEs, as we see next.

2.2, Spatial Smoothing

1t is well known that for moving finite difference methods,
some sort of smoothing of the mesh is often useful in order
to obtain reasonable accuracy in the computed solution
{e.g., see [DD87, FVZ901). In [DD8&7], Dorfi and Drury
use a techmique which smooths the node concentration
defined by 1/(x,, , —x,} In [VBFZE9], Verwer et af. prove
that smoothing the node concentration is basically
equivalent to smoothing the monitor function over all
points (that is, Eq. (15) below with p = n). Since smoothing
the monitor functton is more straightforward to apply than
smoothing the mesh concentration in higher dimensions,
that technique is employed here. Specificaily, the values of
the smoothed monitor function M at nodes are defined by

i+p

=]y o )2( i )'kk”/ ¥y ( : )H
v k=i—p § 1+}’ k=i-—p l+}’ ’

(13)

where 7 is a positive constant called the smoothing
parameter and p is a nonnegative integer which we refer to
as the smoothing index. The summations in (15) are under-
stood to contain only elements with indices in the range

TABLE]
Summary Information for MMPDESs 3-7

MMPDE  Discrete approx. Related references

©) [RR92, Ren92]

{10) [HL86, BVEY)

{11) [Ands3b)

(12 [AF86a, AF86h, Mads4, Gres]
(13) [DD87]

-1 S oth e e
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between zero and #. The final discrete moving mesh equa-
tions are obtained by replacing M, by A1, in (9)-(13). For
simplicity, these moving mesh equations with A7 will be
called the smoothed moving mesh equations. Note that the
replacement of M, by M, is basically equivalent to using a
smoother monitor function.

The smoothing parameter y has been used by many
authors and has a natural physical meaning (e.g., see
[DD87]). However, the smoothing index p seems to be new
in this context and warrants some remarks. Note that p
determines the range of smoothing {averaging). The non-
smooth and three-point average cases correspond to p=0
and p=1, respectively. The three-point average, which is
commeonly used in adaptive methods, results in a five-block-
diagonal algebraic system (where the dimensions of the
blocks depend on the number of underlying physical
PDEs). For general p, the algebraic system is (3 + 2p)-
block-diagonal. Therefore, more cost to solve the nonlinear
system is generally associated with higher values of p. On
the other hand, the higher the value of p, the smoother the
resulting mesh. Determining an optimal value for p is not
normally an easy task. In our experience, the moving mesh
methods with p =1 or 2 or 3 usually give good results.

2.3, Moving Mesh Methods

We now give a more complete description of the moving
mesh methods. Consider a time-dependent problem of the
form

il
%:f(u), O<x<l, >0, (16)

subject to appropriate boundary and initial conditions,
where f represents a differential operator involving only
spatial derivatives. For example, Burgers’ equation has the
form (16) with

&u 0

2
f(u)=s(—?~x—2—5;(u?), £>0. (17)

Using the coordinate transformation (1), {16) can be
rewritten in the (quasi-)Lagrangian form

0
G-t %= fu), O<x<l, >0 (18)
dx
Discretizing by centred finite differences gives
s do) e 0 ey, (19)

(Xip1—Xi_y)

where /; denotes the discrete approximation to the differen-
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tial operator f at £ =¢, using a conservative centred finite
difference scheme.

For a given monitor function M{x, ¢), the system to solve
numerically consists of {19}, one of the smoothed discrete
moving mesh systems (9)-(13), and the corresponding
boundary and initial conditions for the mesh x and
solution 1. Hereafter, we refer to the methods associated
with MMPDEs 3-7 as simply Methods 3-7.

Values of the three parameters 1, y (smoothing) and p
(smoothing index) need be selected for these moving mesh
methods. In our experience, the choice of 7 is fairly insen-
sitive, and generally y can be fixed. In this paper, we choose

y=2. (20}
The value for p is taken as 1, 2, 3, or 4. The selection of the
value for t is discussed in Section 3.

3. NUMERICAL EXPERIMENTS

In this section, numerical results are presented for
the moving mesh methods applied to three problems, a
reaction-diffusion equation which models a problem from
combustion theory, the well-known convection—diffusion
equation of Burgers, and a system of two quasi-nonlinear
hyperbolic equations which may be counsidered as a
prototype of an opposite travelling waves problem. We
choose these problems as our test examples because they
show qualitatively different solution behaviour and because
they have been used extensively in the moving mesh
literature. It 15 worth emphasizing that these problems are
also the ones used in [FVZ90] to compare the reliability,
robustness, and efficiency of three representative moving
mesh methods.

Throughout, we shall use the arclength monitor function

M(x, )=./1 + (du/éx)?

and discretize with centred three-point finite differences at
interior nodes and with one-sided two-point differences at
boundary nodes. The ODE systems for the moving mesh
methods are solved using the double precision version of the
stiff ODE solver DASSL [Pet82]. The time integration
method is chosen as the backward differentiation formulas
(BDF), wherein an approximate Jacobian is computed by
DASSL internally using finite differences. Other required
input data are the initial solution, the initial mesh, and
relative and absolute local time stepping error tolerances
rrol and ato! (in a root-mean-square normj. In all cases, a
uniform initial mesh is used. The term

(21)

E()= L) (22)

i=1.,n—1 Ml(f)
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is used to measure the level of mesh equidistribution and

min

i=4q,..,n--

H{t)= 1 (xi () — x:{(1)) (23)

is used to denote the minimal spacing at time /. We also use
NTS, JAC, ETF, and CFN to denote the total number of
time steps taken, Jacobian evaluations, error test failures,
and convergence test failures in Newton iteration. All
computations are performed on 2 SPARC 1+ in double
precision.

3.1. Problem 1: A Scalar Reaction-Diffusion Problem from
Combustion Theory

This problem is described in [AF86a] as a model of a
single-step reaction diffusion and reads

Re? s
u,=um+—(g(l+a——u)e Mo Bex<l, >0
u(0,)=0, w{l.f)=1, 130 (24)
u(x,0) =1, 0<x<gl,

where R, d, and a are constants. The solution represents the
ternperature of a reactant in a chemical system. For small
times the temperature gradually increases from unity with a
“hat spot” forming at x = 0. At a finite time, ignition occurs,
causing the temperature at x = 0 to increase rapidly to i + a.
A flame front then forms and propagates towards x=1at a
high speed. The degree of difficulty of the problem is
determined by the value of . Following [ AF86a, VBS39,
FVZ90], we first choose the problem parameters a=1,
R=35, and 4 = 20. For the current choice of parameters, the
steady state is reached slightly before time r=0.29, which
we take as the end peint of the time integration. We use
times t=10.26, 0.27, (.28, 0.29 for output.

As pointed out in [ FVZ901, a numerical difficuity is that
the start of the ignition must be detected accurately without
overshooting by the local error control mechanism of the
stiff ODE solver. Small errors at this time can result in
significantly larger global errors later on. Thus, small
tolerances for the time integration are needed. Indicative of
this sensitivity is the fact that all experiments in [FVZ90]
for this flame problem with methods in [Pet87, DD87,
MMSB1] show a deviation from the reference solution
copied from [VBS89] in a neighbourhood of x =0 at time
1=10.26. However, while it is claimed in [ VBS89] that their
reference solution with 151 moving mesh nodes may not be
accurate at ¢ = (.26 in the neighbourhood of x =0, errors do
not seem to be as large as those in [FVZ90]. In f{act, this
reference solution listed in Verwer er al. [ VBS89] has the
value of u(0, 0.26): ~1.59, while the soiution obtained using
DASSL (with time tolerances atol = rtol = 10~%) with 2001
uniform nodes has u(0, 0.26): ~1.61.
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Deviations may be caused by inaccuracy in both the time
integration and the discrete approximation to the problem,
especially the approximation to the Neumann boundary
condition at x=0. To show this, we test two discrete
approximations to the Neumann boundary condition,

BT (25)
Xy —Xo
and
2, — Re?
go= 2z o) R uyeme (26)

(.xl ‘_xg)z 05

The approximation (26) is obtained as follows: We intro-
duce a fictitious node x_, = —x, which lies outside the
physical domain, and we use the reflection boundary condi-
tion

Uy —l_,y

=0 27
X —X
and the difference equation at x = x,,
R __u1—2u0+uﬁl ReJ —Gfug
ty = o) +a5 (l+a—uy)e ™ (28)

Then, eliminating u_, {rom (27) and {28), we obtain (26),
which is known to be more accurate than (25) (e.g., sce
{Fie881).

In Tablell, we list results for »(0, 0.26) obtained with
Method 4 and with £ =10"7, p=2, It can be seen from this
table that when large tolerances {such as atol = rrof = 1077)
are used, both approximations give large deviations. For
small tolerances, the deviations c¢an be reduced, but only

TABLE 11
Problem 1
n atol = rtol (25) (26)
20 103 200000 200000
10-* 142419 1.64520
196 1.41794 161577
10-¢ 1.41677 1.61124
40 1032 200000 2.00000
10-3 1.50119 1.65020
10-° 1.48994 1.61996
10-8 1.48786 1.61527
200 10-¢8 1.587%6 161659

Note. Values of u{0, 0.26) obtained with Method 4 (MMPDE4) and
with t=1073, p=2 In [ VBS89], the value obtained with 2001 non-
moving, uniform nodes is about 1.61.
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TABLE 111
Problem 1: Results for Methods 3-7 with n =20

MMEDE »p 3 NTS JAC ETF CFN  «(0,0.26)
3 2 1.0 492 43 20 0 1.61561
102 267 40 16 [} 1.61578
103 328 35 2 0 1.62038
10-7 351 38 3 0 162035
4 2 1.0 463 43 2B 0 1.61561
0 10 21 42 18 0 1.61589
1 4% 42 16 0 1.61584
2 243 40 17 0 161577
4 250 37 i8 ] 1.61571
2 10-°% 320 37 2 4 1.62033
10-7 357 37 1 \ 1.62035
5 2 4x10%2 497 30 20 0 1.61560
4x 101 299 32 20 0 1.61583
4%107% 299 38 18 0 1.61566
41073 356 37 2 ] 1.62035
6 2 1.0 513 31 25 0 1.61561
1073 241 34 20 0 161574
10~ 334 33 3 4] 1.62037
107 363 37 i 0 1.62035
7 2 1.0 502 43 22 0 1.61561
[ 225 39 19 0 1.61577
10~3 306 38 2 0 1.62038
10-7 354 35 1 0 1.62035

with the approximation (26} can accurate results be
obtained for small n.

In the plots for this case, the reference solution (solid
lines) is the one obained with Method 4 and with » = 200,
t=1073 p =2, and atol = rtel = 10 ~%. The other computa-
tions are performed using the approximation (26) and
atol =rtof =105,

An important parameter in the presemt methods is 1.
Typical results are obtained for Method 4 (MMPDE4) with
four decreasing values of ¢, fixed n =20, and p=2. For
7 =1, the start of the ignition is detected quite accurately,
but a nearly nonmoving mesh results and the numerical
fiame front is too slow in the propagation phase. As 1
decreases, the mesh follows the flame much better and the
number of time steps (NTS) is reduced significantly {see
Table I1I). Functions £(r) and H{(¢} for the four vatues of 1
are shown in Fig. 1. It can be s¢en in this figure that, during
the formation of the flame front, the nodes concentrate
around the sharp gradient region and the minimal mesh
spacing decreases quickly. Meanwhile, £(r) rapidly
increases by a factor of about 100. However, smaller values
of E(#) are obtained using smaller values of 1.

The results obtained with Methods 3 and 5-7 are stmilar
to those with Method 4 and are summarized in Table {Il.
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FI1G. ). Problem | with 6 =20. Functions £(t) and H(z) for Method 4

(MMPDE4) with n=20 and p=32 0—&, 1=10;, +—+, t=10"%
O—0,t=10"% x—x,t=10"".

One comment is in order regarding the choice of ¢ in
Method 5. Recall from Section 2.1 that 7 in Method 3 is
roughly comparable to t/n® for the other methods. This
suggests that the four values: n2, 10 312, 1042, and 10752
may be chosen for ¢ in Method 5 corresponding to the
selected four values 1.0, 10~7, 107, and 10~ 7 for 7 in other
methods. This choice for Method 5 indeed leads to results
similar to those for other methods.

Figure 2 shows typical results for mesh trajectories and
solutions for & =20 obtained by Method 4 with n=20,
p=2, and 1= 1077, In this case the flame layer is not very
thin, and nearly the same accuracy can be obtained in
the conventional way with a uniform, nonmoving mesh
consisting of about 40 nodes. In this sense it is a limited test
of moving mesh methods.

A more interesting choice of problem parametersisa= 1,
R=35, and 6 =30, used in [Pet87]. The flame layer in this
case is much thinner, and higher mesh adaption is required.
The observations made from case & = 20 are still true, except
that smaller values of 1 are needed in order to obtain
accurate approximations. For example, when Method 4
with 1 =20 and p=2 is used, T=10"7 leads to a slowly
propagating flame front, but v = 1072 results in the proper
one, The latter result is shown in Fig. 3. We find that to
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t axis

0.1}

0.05 |-

X axis

FI1G. 2. Problem | with § =20. Mesh trajectories and solutions (at
t=0.26,027,0.28,0.29) for Method 4 MMPDE4  withn=20,p=2,and
T=10"7,

obtain the same accuracy more than 200 uniform nodes and
orders of magnitude more CPU time are needed. The
reference solution {in solid lines) it Fig. 3 is obtained by
using DASSL with arol=rtol=10"" and 2001 uniform
nodes.

We conclude this problem with a comment about the
choice for p. For the easier case § = 20 the spatial smoothing
is not too critical since the flame layer is not very thin and
p=0 pgives satisfactory results, However, some spatial
smoothing is important for the case § = 30. Still, the com-
putations with p= 1.2, 3, and 4 all give reasonably accurate
results.

3.2. Problem 2: Burgers’ Equation

The second test problem is the well-known Burgers’ equa-
tion, first with a smooth initial solution,

u,=eu . —(432),, D<x<l, >0, g=10"%
w0, =1, 1)=0, 10, (29)
u(x, 0y =sin(2rmx) + isin(nx), O0<x<L

This problem frequently serves as a test example for moving
mesh methods, eg, In [GDMEl, HMWS86, FVZ290,

MESH METHODS
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0.234 - :

0.232 - N
0.23
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F1G. 3. Problem 1 with 6 =30. Mesh trajectories and solutions (at
1=10.240, 0241, 0.244, 0.247) for Method 4 (MMPDE4) with n =20, p=2,

and 7= 107>, The performance yields NTS = 1253, JAC =93, ETF =18,
and CFN =0.

TABLE 1V
Problem 2: Resuits for Methods 3-7

MMPDE =n P T NTS JAC ETF CFN

3 20 2 10-3 527 119 39 2

1035 341 93 29 0

1077 348 100 26 0

4 20 2 102 822 176 65 0

0 103 1w 227 81 2

! 432 105 31 0

2 352 83 36 0]

40 443 108 36 0

20 10-* 347 82 25 0

10-7 349 99 26 ]

5 20 2 10,0 384 83 30 1

0.1 350 79 35 0

10-3 377 89 29 0

103 379 109 29 0

6 20 2 1.0 373 67 24 0

10-? 329 81 31 0

10-5 358 83 21 0

10-7 354 92 24 0

7 20 2 10-° 551 122 43 3
10-% 364 82 27

10-7 389 102 22 0
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Ren92 ). The solution is a wave that develops a very steep
gradient and subsequently moves towards x = 1. Because of
the zero boundary values, the wave amplitude diminishes
with increasing time, Following [Mil81] and [FVZ90],
we consider the time interval [0, 2] and use r =0.2, 0.6, 1.0,
14, and 2.0 for solution output points. This is quite a
challenging problem for methods which employ centred
difference approximations. The location of the fine mesh
region is very critical, and these moving mesh methods tend
to generate spurious oscillations as soon as the mesh
becomes slightly too coarse in the layer region, just as with
standard centred differences with a non-moving mesh.

We use atol = 10* and rtol = 1077 in all computations
for this problem. We first compute the solution using
Method 4 (MMPDE4) with =200, t=10"3 and p=2.
The result is used as the reference solution which appears as
a solid line in the plots. (Computing an accurate reference
solution with a uniform mesh is prohibitively expensive.)

Table IV summarizes some computations done using
Methods 3-7. Five values of t are used with Method 4 but
the numerical integration fails for 1 = 10~ . The ODE solver
indicates repeated error test failures and small time step-
sizes. Upon examination, we find that the failure results
from oscillations in the solution due to the mesh being too
coarse in the steep gradient region. For = 1072 although
Method 4 works, the mesh points are still somewhat slow in

le-2

H(t) 1e-3

le-4

1&-5 1 1 1 1 1 1 L . 1
0 02 04 06 08 1 ] 1.2 14 16 1.8 2
t axis
FIG. 4. Problem 2. Functions £() and H{r) for Method4
{MMPDE4} with n=20 and p=2 O—O, r=107% +—+, t=107%
O—0,r=10"% x—x,z=10"".
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moving into the steep region, and slight oscillations appear
in the solution when this steepening occurs (about 1 =0.26).
This slow response of the mesh can be seen clearly from the
graph of H(¢} in Fig. 4b. For smaller values of 7, Method 4
works well. The mesh follows the wave properly and, not
only do the oscillations disappear, but the solutions are
fairly accurate. In Table IV, we also see that NTS, JAC, and
ETF are significantly reduced. Typical results are shown in
Fig. 5. It is interesting to note that the mesh adjusts rapidly
when the wave reaches the boundary x = 1. Figure 4a shows
that the mesh continues to equidistribute the monitor func-
tion. The oscillations in E(¢) for small values of ¢ illustrate
that the mesh may deviate from the equidistribution mesh
but can still recover quickly. The efficiency of Method 4 in
adapting the mesh can be seen from Fig. 4b. It shows that
after the steep gradient forms, the minimal mesh spacing is
reduced below 2 x 10~ Comparabie results with a non-
moving, uniform mesh would be prohibitively expensive.

Results obtained with Methods 3 and 7 are found to be
similar to those with Method 4, except that the performance
with 7 = 10~ is slightly inferior (see Table IV).

Method 5 with 1 = 100 also fails due to oscillations in the
solution. It appears to adapt the mesh faster and to give a
slightly more accurate solution than Method 4 with com-
parative 7 values of 102, 102 and 10"

While the computation with Method 6 also fails for

a o
18
16 F
14}
1.2

L
taxis 1}
08 |
0.6 |
04|
o2 b
0

0 0.2 0.4 0.8 0.8 1
X axis

FIG. 5. Problem 2. Mesh trajectories and solutions {at t =0.2,0.6, 1 0.
14, and 2.0) for Method 4 (MMPDEA4) with # =20, p=2,and 1 =10~3,



t axis

FIG. 6. Problem 2. Mesh trajectories and solutions {at 1 =0.2,0.6, 1.0,
14, and 2.0} for Method 6 (MMPDE 6) with n =20, p==2, and 1= 10772,

t axis

FIG. 7. Problem 2. Mesh trajectories and solutions {at =02, 0.6, 1.0,
1.4, and 2.0} for Method 4 (MMPDE4) with n=20, v=10"% and p=0.
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FIG. 8. Problem 2, Mesh trajectories and solutions (at r=0.2,06, 1.0,
1.4, and 20) for Method 4 (MMPDEA4) with n=40, p=2, and t= 1072
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FI1G. 9. Problem 2 with corner structures. Solutions (at t=0, 0.1, 0.2,
(1.3, 0.4, and 0.5) for Method 4 (MMPDE4) with an initial uniform mesh,
p=4,t=10"2 and n =40 for (a), # = 200 for (b).
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7= 10 due to osciilations in the solution, with r = 1.0, 0.1,
and 1072 it is successful, whereas Method 4 fails. Also,
Method 6 produces smoother mesh trajectories and more
accurate solutions (see Fig. 6).

To illustrate the importance of the spatial mesh
smoothing for this problem, several computations are
performed with Method 4. Figure 7 shows how the mesh
trajectories and solutions obtained with p=0 are very
erratic, with visible oscillations occurring in the solution.
Upon increasing p, the mesh trajectories become smoother
and nonoscillatory solutions are obtained (see Figs. 7
and 5). Information about these runs is listed in Table IV,

a g5
0.45

0.4

0.35

t axis 0-3
0.25

0.2

0.15

0.1

305

-0.4 -0.2 0 0.2 0.4

t axis

-04
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The figures show clearly that the computed solution with
these MMPDEs is generally quite accurate with n=21
mesh points, except perhaps near the corners of the layers.
These results compare very favourable with those elsewhere
(e.g., see [FVZ90]}. For reference purposes, we compute
the solution with Method 4 and » = 40. Summary informa-
tion is included in Table IV and Fig. 8.

It has been pointed out to us by Keith Miller that these
methods with the arclength monitor function will perform
poorly for problems with “sharp-but-not-steep” corner
structures. To see this, consider Burgers’ equation (29) with
an initial solution u{x, 0) given as the piccewise linear func-

d . =025
T T T T T
0.8 - { J
!
0.6 i
) |
t axis 0.4 b [ R

I 1 i 1 L
-0.4 -0.2 1] 0.2 0.4
x axis
e t=10.30
T T T T Y
0.8 |- { 4
f
0.6 -
) ]
t axis o4 | A

t
RS | 4
06t ! y
baxis gl 4

FIG. 10, Problem 3. Mesh trajectories and solutions (at :=0.1, 0.2, 0.25, 0.3, and 0.5) obtained with Method 6 (MMPDES) and with n =40,
t=10"3, and p =2. The performance yields NTS =207, JAC =35, ETF = }, and CFN =0. In the plots, ¢ represents #{x, 1} and + represenis o(x, 1),
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tion whose graph goes through the points (0, 0), (0.3, 1),
(0.6, 1), (0.61, 0}, and (1, 0). The initial corners at (0.6, 1)
and {0.61, 0) will quickly become the corners of a sieep
shock moving with speed +0.5. These two “sharp-and-
steep” corners will be adequately tracked and resolved with
small local mesh spacing by the present methods with the
arclength monitor function. The initial corner at (0.3, 1),
however, will remain a “sharp-but-not-sieep” corner
moving ahead with speed + 1. Thus there is nothing in the
methods to produce small Ax’s near this corner, nor is there
anything in the methods to cause the nodes near this corner
to track with the desired speed +1. Hence, oscillations
occur near this moving corner. These are seen in Figs. 9a
and 9b which show solutions obtained with MMPDE4 and
t= 1077, p=4. The figures also show that the oscillations
can be significantly weakened by increasing the number of
nodes. {We note here that the solution obtained with 2001
uniform nodes still involves very rapid oscillations.} For
such problems the solution might be better resoived by

using the curvature monitor function, as discussed
in [BY89].

3.3. Problem 3: Waves Travelling in Opposite Directions

Our final example is a two-component, quasi-nonlinear
hyperbolic system, the solution of which is composed of two
waves traveliing in opposite directions and located initially
at x = —0.2 and x =0.2. The system is given by

u,= —u, — 100uy, —05«<x<05, >0,
v,= v, — 100w, —05<x<05, >0,
u(—0,5 1)=0(05, 1} =0, >0, (30)
with the initial conditions

0.5[1 + cos(10mx)], xe[—03, -0.1],
u(x, 0)= )

0, otherwise;

(3H

0.5[1 +cos(l0nx)],  xe{0.1,03],
v(x, N = )

0, otherwise.

This problem is used in [ VBS89, FVZ90] as a test example

for moving mesh methods. The time integration interval is

{0, 0.5] with output times = 0.1, 0.2, 0.25, 0.3, and 0.5.
We use the arclength-like monitor function

Mix, 1) = /1 4+ 10(0w/ax)? + 10{av/dx)?:,  (32)
which is particularly adequate since the waves are not very
steep after they separate, to obtain sufficient resolution in
the vicinity of the two waves. In the computations atof =
10~* and rtol =10~ are used.

For this problem, Methods 3-7 all give similar results,
Figure 10 shows typical results obtained with Method 6.

289

The reference solution, which is plotted in solid lines, is
obtained with Method 6 and with 7 =200, t=10"3, and
r=4

It is interesting to note that, unlke in [FVZ90],
Methods 3~7 use a upiform initial mesh. With the “forcing
term” on the right-hand side for these MMPDEs, no initial
mesh redistribution stage is necessary, and at the beginning
of the computation the mesh quickly adjusts to equi-
distribute the arclength and follow the waves. From Fig. 10,
the solutions are seen to be fairly accurate. Higher resolution
is obtained with the use of more mesh points. Finally, note
that the accurate refinement in the vicinity of the travelling
waves is maintained during and after the wave interaction.

4. CONCLUSIONS AND COMMENTS

Several versions of a moving mesh method have been
developed in previous sections based on the moving
mesh PDEs derived in [HRR92] and on a spatial mesh
smoothing technique. These versions are found to be quite
simple and straightforward to implement. They are applied
to three bench-mark one-dimensional problems displaying
different types of solution behaviour. The numerical results
are very encouraging and clearly show that the methods are
capable of accurately tracking rapid spatial and temporal
transitions.

The moving mesh methods involve three parameters,
However, the parameter values are generally easy to select,
and the performance of the methods are relatively insen-
sitive to their choice. This is in contrast to experience with
previous methods (e.g., see [FVZ90]). One important
parameter is the mesh parameter . The numerical
experiments demonstrate that good results can be obtained
for a wide range of value of 1. For the most difficult problem
of the three (Burgers’ equation), the mesh smoothing
parameter p must be chosen to be greater than one
Mgthod 6 (MMPDES) then works best, followed by
Methods 4 (MMPDE4) and § (MMPDES). (Note that
MMPDEG can be obtained by letting the monitor func-
tion M equal one on the left-hand side of MMPDE4.) In
general, the results for MMPDE 3-7 appear to be com-
parable to or superior to those for previous moving mesh
methods. Furthermore, unlike for many methods, extension
of MMPDEs 3 and 4 to multidimensions is possible by
using quasi-static multidimensional formulas, such as in
[BS82, Dvi91, HS8921. Such an extension is currently under
investigation. ‘
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